$$ {n \choose k} = \frac{n!}{(n-k)!k!} $$
$$ For \quad 2 \leq n \in N, \quad \sum_{k=2}^{n}k(k-1){n \choose k} = n(n-1)2^{n-2} $$
$$ For \quad 1 \leq n \in N, \quad \sum_{k=1}^{n+1}\frac{1}{k}{n \choose k} = \frac{2^{n+1}-1}{n+1} $$