링크 :

1. 개요

2. Formulation

$$ \frac{dX_k}{dt} = -X_{k-1}(X_{k-2} - X_{k+1}) - X_k + F - \frac{hc}{b} \sum_{j=1}^{J} Y_{k,j}

\\

\frac{dY_{k,j}}{dt} = -cb Y_{k,j+1}(Y_{k,j+2} - Y_{k,j-1}) - c Y_{k,j} + \frac{hc}{b} X_k

\\

\begin{align*} &X_k: \text{Large-scale variable (slow dynamics)} \\ &Y_{k,j}: \text{Small-scale variable (fast dynamics)} \\ &F: \text{External forcing term} \\ &c, b, h: \text{Constants for coupling and scaling} \end{align*}

$$

3. Data Generation 및 Training

(1) Train data

$$ [Z_{t_s}^{(i)}, Z_{t_s+\triangle t}^{(i)}, ..., Z_{t_s+m\triangle t}^{(i)}] \quad i = 1, 2, ..., n $$

(2) Training

$$ [\hat Z_{t_s}^{(i)}, \hat Z_{t_s+\triangle t}^{(i)}, ..., \hat Z_{t_s+m\triangle t}^{(i)}] \quad i = 1, 2, ..., n $$