1. 개요

$$ P(X_t|Y_{1:t-1}) \rightarrow +Y_t \rightarrow P(X_t|Y_{1:t}) $$

2. 필터링 상세 과정

(1) Predict Step

$$ P(X_t|Y_{1:t-1}) = \int P(X_{t-1}, X_t|Y_{1:t-1})dx_{t-1} = \int P(X_t|X_{t-1})P(X_{t-1}|Y_{1:t-1})dx_{t-1} $$

(2) Update Step

$$ P(X_t|Y_{1:t}) \propto P(Y_t|X_t)\int P(X_t|X_{t-1})P(X_{t-1}|Y_{1:t-1})dx_{t-1} $$

3. 결론

4. 정규분포 랜덤워크 모델의 베이지안 필터링