1. 몬테카를로 적분과 중요도 샘플링

(1) 몬테카를로 적분

$$ G = \int \frac{g(x)}{p(x)}p(x)dx = E_{x \sim p(x)}(\frac{g(x)}{p(x)}) \approx \frac{1}{N}\sum_{i=1}^{N} \frac{g(x_i)}{p(x_i)} \quad where \quad x \sim p(x) $$

(2) 중요도 샘플링

$$ G = \int \frac{g(x)p(x)}{q(x)}q(x)dx = E_{x \sim q(x)}(\frac{g(x)p(x)}{q(x)}) \approx \frac{1}{N}\sum_{i=1}^{N} \frac{g(x_i)p(x_i)}{q(x_i)} = \frac{1}{N}\sum_{i=1}^{N} w(x_i)p(x_i) \quad where \quad x \sim q(x) $$

2. 디락-델타(Dirac-Delta)함수

$$ \int \delta(x)dx=1, \quad \delta(x-a) = 0 \quad for \quad any \quad x \; != a $$

3. 표본추출로 확률분포 근사하기