1. 개요

2. 순차적으로 추출하지 않는 상황

$$ x_{1:t}^{(i)} \sim q(x_{1:t}|y_{1:t}), \quad w_{t}^{(i)} = \frac{p(x_{1:t}|y_{1:t})}{q(x_{1:t}|y_{1:t})} $$

3. 순차적으로 추출하는 상황

$$ q(x_{1:t}|y_{1:t}) = q(x_{t}^{(i)}|x_{1:t-1}^{(i)},y_{1:t})q(x_{1:t-1}^{(i)}|y_{1:t-1}) $$

$$ p(x_{1:t}^{(i)}|y_{1:t}) = \frac{p(y_{t}|x_{t}^{(i)})p(x_{t}^{(i)}|x_{t-1}^{(i)})p(x_{1:t-1}^{(i)}|y_{1:t-1})}{p(y_t|y_{1:t-1})} \propto p(y_{t}|x_{t}^{(i)})p(x_{t}^{(i)}|x_{t-1}^{(i)})p(x_{1:t-1}^{(i)}|y_{1:t-1}) $$

$$ w_{t}^{(i)} = \frac{p(x_{1:t}|y_{1:t})}{q(x_{1:t}|y_{1:t})} = \frac{p(y_{t}|x_{t}^{(i)})p(x_{t}^{(i)}|x_{t-1}^{(i)})p(x_{1:t-1}^{(i)}|y_{1:t-1})}{q(x_{t}^{(i)}|x_{1:t-1}^{(i)},y_{1:t})q(x_{1:t-1}^{(i)}|y_{1:t-1})} = \frac{p(y_{t}|x_{t}^{(i)})p(x_{t}^{(i)}|x_{t-1}^{(i)})}{q(x_{t}^{(i)}|x_{1:t-1}^{(i)},y_{1:t})}w_{t-1}^{(i)} $$