GitHub - m2lines/L96_demo: Lorenz 1996 two time-scale model for learning machine learning

Stochastic parametrizations and model uncertainty in the Lorenz ’96 system | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

1. 개요

2. Lorenz 96 System & Stochastic Parmetrization

$$ \frac{dX_k}{dt} = -X_{k-1}(X_{k-2} - X_{k+1}) - X_k + F - \frac{hc}{b} \sum_{j=1}^{J} Y_{k,j}

\\

\frac{dY_{k,j}}{dt} = -cb Y_{k,j+1}(Y_{k,j+2} - Y_{k,j-1}) - c Y_{k,j} + \frac{hc}{b} X_k

\\

\begin{align*} &X_k: \text{Large-scale variable (slow dynamics)} \\ &Y_{k,j}: \text{Small-scale variable (fast dynamics)} \\ &F: \text{External forcing term} \\ &c, b, h: \text{Constants for coupling and scaling} \end{align*} $$

$$ \frac{dX_k^}{dt} = -X_{k-1}^(X_{k-2}^* - X_{k+1^}) - X_k^ + F - U_p(X_K^*) $$

$$ U_p(X_k^*) = U_{det} + \epsilon(t) $$