$$ \max_{u}d(\boldsymbol u)=\max_{\boldsymbol u} \min_{\boldsymbol x} L(\boldsymbol x, \boldsymbol u) \leq \min_{x} \max_{u} L(\boldsymbol x, \boldsymbol u) = \min_{x}f(\boldsymbol x) $$
등호 및 부등호가 성립하는 이유는 다음과 같다.
$$ L(\boldsymbol x, \boldsymbol u) = f(\boldsymbol x) + \sum_{i=1}^{I}u_ig_i(\boldsymbol x)\\\max_{u}L(\boldsymbol x, \boldsymbol u) = f(\boldsymbol x) \quad (\longleftarrow g_i(\boldsymbol x) \leq 0, \quad L(\boldsymbol x, \boldsymbol u) \leq f(\boldsymbol x)) \\ d(\boldsymbol u) =\min_{x^} L(\boldsymbol x, \boldsymbol u) \leq \min_{x \in C} L(\boldsymbol x, \boldsymbol u) \leq f^= \min_{x^*} f(\boldsymbol x) \leq \min_{x \in C} f(\boldsymbol x) $$
maximization primal problem의 모든 feasible solution과 minimization dual problem의 모든 feasible solution에 대하여, primal problem의 objective value가 dual problem의 objective value보다 항상 더 작거나 같다
따라서, Primal Problem과 Dual Problem 사이에 다음 관계가 성립한다.
$$ \min_{u}d(\boldsymbol u) = \min_{u}\max_{x}L(\boldsymbol x, \boldsymbol u) \geq \max_{x}\min_{u}L(\boldsymbol x, \boldsymbol u) = \max_{x}f(\boldsymbol x) $$
등호 및 부등호가 성립하는 이유는 다음과 같다.
$$ L(\boldsymbol x, \boldsymbol u) =f(\boldsymbol x)-u^{T}g_{i}(\boldsymbol x) \\ \min_{u} L(\boldsymbol x, \boldsymbol u) = f(\boldsymbol x) \quad (\longleftarrow g_i(\boldsymbol x) \leq 0, \quad f(\boldsymbol x) \leq L(\boldsymbol x, \boldsymbol u)) \\ d(\boldsymbol u) =\max_{x^} L(\boldsymbol x, \boldsymbol u) \geq \max_{x \in C} L(\boldsymbol x, \boldsymbol u) \geq f^= \max_{x^*} f(\boldsymbol x) \geq \min_{x \in C} f(\boldsymbol x) $$
$$
\forall i,j, \quad \exist \boldsymbol x \in R^n \quad s.t. \quad h_i(\boldsymbol x) < 0, \quad g_j(\boldsymbol x) = 0
$$