참고 :

Memory-based parameterization with differentiable solver: Application to Lorenz ’96

GitHub - bhouri0412/Hist_Bayesian_Closure

1. Abstract

2. Methods

(1) Instantaneous Parameterization

$$ \frac{dX_k^}{dt} = -X_{k-1}^(X_{k-2}^* - X_{k+1}^) - X_k^ + F - P(X_k^*;\theta)

\\

\frac{dY_{k,j}^}{dt} = -cb Y_{k,j+1}^(Y_{k,j+2}^* - Y_{k,j-1}^) - c Y_{k,j}^ + \frac{hc}{b} X_k^*

\\

\begin{align*} &X_k^: \text{Forecasted Large-scale variable (slow dynamics)} \\ &Y_{k,j}^: \text{Forecasted Small-scale variable (fast dynamics)} \\ &F: \text{External forcing term} \\ &c, b, h: \text{Constants for coupling and scaling} \end{align*}

$$

(2) Memory-based Parameterization

$$ \frac{dX_k^}{dt} = -X_{k-1}^(X_{k-2}^* - X_{k+1}^) - X_k^ + F - P(X_k^, X_k^(t-\tau), ... X_k^*(t-n\tau);\theta)

\\

\frac{dY_{k,j}^}{dt} = -cb Y_{k,j+1}^(Y_{k,j+2}^* - Y_{k,j-1}^) - c Y_{k,j}^ + \frac{hc}{b} X_k^*

\\

\begin{align*} &X_k^: \text{Forecasted Large-scale variable (slow dynamics)} \\ &Y_{k,j}^: \text{Forecasted Small-scale variable (fast dynamics)} \\ &F: \text{External forcing term} \\ &c, b, h: \text{Constants for coupling and scaling} \end{align*}

$$

(3) Delay-Differential Equation Solver

A. 문제점

B. 해결 방법