$$ Markov(\bold Z_n)= (Z_{i+1}-Z_{i-2})Z_{i-1}-Z_i+F $$
$$ Memory(\bold Z_n) = NN(\bold Z_{n}, \bold Z_{n-1}, ..., \bold Z_{n-n_M};\Theta)) $$
$$ \bold Z_{n+1} = \bold Z_n + dt*(Markov(\bold Z_n) +NN(\bold Z_{n}, \bold Z_{n-1}, ..., \bold Z_{n-n_M};\Theta)) $$
Plot


외삽 성능
| 새로운 초기값에 대한 외삽 성능(Relative Det) | 논문 | Baseline(Memory-Based Parameterization) |
|---|---|---|
| 불확실성 미고려 | 0.0908 | 0.3347 |
| 불확실성 고려 | 0.0909 | 없음 |
그리고 NN을 이용한 parameterization은 기존에 조사했던 다음 2가지를 이용
Learning subgrid-scale models with Neural Ordinary Differential Equations(Kang et al)
Memory-based parameterization with differentiable solver: Application to Lorenz ’96 (Bhouri et al)