1. 개요

2. Markov Term과 Memory Term의 분리

(1) Markov Term

$$ Markov(\bold Z_n)= (Z_{i+1}-Z_{i-2})Z_{i-1}-Z_i+F $$

(2) Memory Term

$$ Memory(\bold Z_n) = NN(\bold Z_{n}, \bold Z_{n-1}, ..., \bold Z_{n-n_M};\Theta)) $$

(3) Prediction

$$ \bold Z_{n+1} = \bold Z_n + dt*(Markov(\bold Z_n) +NN(\bold Z_{n}, \bold Z_{n-1}, ..., \bold Z_{n-n_M};\Theta)) $$

(4) 결과

3. 성능 비교

Stochastic Parameterization Using Compressed Sensing: Application to the Lorenz-96 Atmospheric Model | Tellus A: Dynamic Meteorology and Oceanography